Seminary 1 Vectors and kinematics

The unsolved problems are given as homework.

(I) VECTORS

DISCUSSIONS Briefly remember useful notions from the course: analytical representation of vectors, operations with vectors (vector sum, difference, scalar and vector products).

PROBLEMS

1) Two vectors are defined analytically as follows, $\vec{A}=3 \vec{\imath}+4 \vec{\jmath}$ şi $\vec{B}=4 \vec{\imath}+2 \vec{\jmath}$.
a) Graphically represent the two vectors.
b) Calculate and plot the sum, $\vec{A}+\vec{B}$, and the difference, $\vec{A}-\vec{B}$, of the two.
c) Calculate the scalar product of vectors \vec{A} and \vec{B}.
d) Calculate and plot the projection of vector \vec{B} on the direction of vector \vec{A}.
e) If vector \vec{C} is given by $2 \vec{\imath}+a \vec{\jmath}$, find the value of a so that \vec{C} is perpendicular to \vec{A}.
f) Plot the two vectors \vec{A} and \vec{C}.
g) What is the projection of \vec{C} along the direction of \vec{A} ?
2) If \vec{A} and \vec{B} are nonzero vectors, is it possible for $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$ both to be zero? Explain your answer.
3) Vectors \vec{A} and \vec{B} and have scalar product -6.0 and their vector product has magnitude +9.0 . What is the angle between these two vectors?

(II) KINEMATICS

DISCUSSIONS Briefly remember useful definitions from kinematics, definitions of $\mathbf{r}(\mathrm{t})$, $\mathbf{v}(\mathrm{t}), \mathbf{a}(\mathrm{t}) \ldots$

PROBLEMS

1) A car at point \mathbf{A} on a straight road goes west for 20 seconds, arriving at point \mathbf{B} which is 200 m away from \mathbf{A}. The car then heads back to the east for 30 seconds, arriving at point C which is 800 m away from B What is the displacement of the car from point A ? (Graphically analyze the problem). Assume that + is east and is - west.
2) A cross-country skier skis 1.00 km north and then 2.00 km east on a horizontal snowfield. How far and in what direction is she from the starting point?

The vector diagram, drawn to scale, for a ski trip.

3) The position vector of a particle has the following time dependence:

$$
\vec{r}(t)=3 t \vec{i}-4 \vec{j}+7 t \vec{k}
$$

Determine:
(a) The velocity and the acceleration vectors time dependence laws.
(b) The position of the particle after $\mathrm{t}=3 \mathrm{~s}$.
(c) The particle's average velocity in the time range $\mathrm{t}_{1}=3 \mathrm{~s}$ and $\mathrm{t}_{2}=5 \mathrm{~s}$.
4) The position of a squirrel running in a park along a straight line is given by: $x=0.28 t-0.036 t^{2}$
a) What is the velocity of the squirrel as a function of time?
b) What is the acceleration of the squirrel as a function of time?
c) At $t=2.0 \mathrm{~s}$, how far is the squirrel from the initial position?
d) What is the speed of the squirrel at $\mathrm{t}=0$ and at $\mathrm{t}=2 \mathrm{~s}$?
e) Discuss the sign of the squirrel acceleration.
5) An object's velocity is measured to be $v_{x}(t)=\alpha-\beta t^{2}$, where $\alpha=4 \mathrm{~m} / \mathrm{s}$ and $\beta=2 \mathrm{~m} / \mathrm{s}^{3}$. At $\mathrm{t}=0$ the object is at $x=0$. (a) Calculate the object's position and acceleration as a function of time. (b) Graphically represent $\mathrm{x}(\mathrm{t}), \mathrm{v}_{\mathrm{x}}(\mathrm{t}), \mathrm{a}_{\mathrm{x}}(\mathrm{t}$). (c) What is the object's maximum positive displacement from the origin?

