Seminary 1 Vectors and kinematics

The unsolved problems are given as homework.

(I) VECTORS

DISCUSSIONS Briefly remember useful notions from the course: analytical representation of vectors, operations with vectors (vector sum, difference, scalar and vector products).

PROBLEMS

1) Two vectors are defined analytically as follows, $\vec{A} = 3\vec{i} + 4\vec{j}$ si $\vec{B} = 4\vec{i} + 2\vec{j}$.

- a) Graphically represent the two vectors.
- b) Calculate and plot the sum, $\vec{A} + \vec{B}$, and the difference, $\vec{A} \vec{B}$, of the two.
- c) Calculate the scalar product of vectors \vec{A} and \vec{B} .
- d) Calculate and plot the projection of vector \vec{B} on the direction of vector \vec{A} .
- e) If vector \vec{C} is given by $2\vec{i} + a\vec{j}$, find the value of a so that \vec{C} is perpendicular to \vec{A} .
- f) Plot the two vectors \vec{A} and \vec{C} .
- g) What is the projection of \vec{C} along the direction of \vec{A} ?

2) If \vec{A} and \vec{B} are nonzero vectors, is it possible for $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$ both to be zero? Explain your answer.

3) Vectors \vec{A} and \vec{B} and have scalar product -6.0 and their vector product has magnitude +9.0. What is the angle between these two vectors?

(II) KINEMATICS

<u>DISCUSSIONS</u> Briefly remember useful definitions from kinematics, definitions of $\mathbf{r}(t)$, $\mathbf{v}(t)$, $\mathbf{a}(t)$...

PROBLEMS

1) A car at point **A** on a straight road goes west for **20** seconds, arriving at point **B** which is 200m away from **A**. The car then heads back to the east for 30 seconds, arriving at point C which is 800 m away from B What is the displacement of the car from point **A**? (Graphically analyze the problem). *Assume that* + *is east and is - west*.

2) A cross-country skier skis 1.00 km north and then 2.00 km east on a horizontal snowfield. How far and in what direction is she from the starting point?

The vector diagram, drawn to scale, for a ski trip.

3) The position vector of a particle has the following time dependence:

 $\vec{r}(t) = 3t\vec{i} - 4t\vec{j} + 7t\vec{k}$

Determine:

- (a) The velocity and the acceleration vectors time dependence laws.
- (b) The position of the particle after t=3s.
- (c) The particle's average velocity in the time range $t_1=3s$ and $t_2=5s$.

4) The position of a squirrel running in a park along a straight line is given by: $x = 0.28t - 0.036t^2$

a) What is the velocity of the squirrel as a function of time?

b) What is the acceleration of the squirrel as a function of time?

- c) At t= 2.0 s, how far is the squirrel from the initial position?
- d) What is the speed of the squirrel at t=0 and at t=2s?
- e) Discuss the sign of the squirrel acceleration.

5) An object's velocity is measured to be $v_x(t) = \alpha - \beta t^2$, where $\alpha = 4$ m/s and $\beta = 2$ m/s^{3.} At t=0 the object is at x=0. (a) Calculate the object's position and acceleration as a function of time. (b) Graphically represent x(t), v_x(t), a_x(t). (c) What is the object's maximum positive displacement from the origin?