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The analysis of the diffraction line broadening in X-ray powder pattern is analyticall y 
calculated using the Generalized Fermi Function facilities. X-ray line broadening 
investigations of supported catalysts have been l imited to finding the average crystall ite size 
from the integral width or the full width at half maximum of the diffraction line. In the case of 
supported metal catalysts, it is generally difficult to perform satisfactory intensity 
measurements of the higher order (hkl) reflections. Consequently, the classical method of 
Warren and Averbach cannot be applied. In our cases, only one l ine is present in the 
experimental spectra, so we used an approximation method of Charlson that can be applied for 
small crystalli te size. We present a new fitting method based on the Generalized Fermi 
Function for the approximation and Fourier transform of the experimental X-Ray l ine profiles. 
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1. Introduction 

 
The X-ray powder pattern diffraction profile broadening analysis is a valuable technique for 

the crystalline materials structure and properties investigation. The powder reflection broadening of 
the metal support catalyst is normally caused by small size crystall ites and by distortions within 
crystallites due to dislocation configurations [1,2]. The structural information obtainable by single        
X-ray profile Fourier transform consist in: effective particle size, microstrains, particle distribution 
function and stacking fault probability. These information were obtained by numerical deconvolution 
of the instrumental and experimental X-Ray line profi les (XRLP) approximated by Generalized Fermi 
Function (GFF) [3-5]. 

The XRLP Fourier analysis validity depends strongly on the magnitude and nature of the 
errors propagated in analysis [6]. Herein, we emphasize only sampling factors such as evaluation of 
the background corrections, angular range of the observation and the number of equally spaced points 
at which the diffraction line intensity is measured. This type of errors was recently treated [7]. Our 
analytical approach, adopted here, eliminates all these errors. 
 

 
2 Why do we use GFF for the XRLP analysis? 

 
It is known that, from a mathematical point of view, XRLP are described by an asymmetri c 

function [1]. In the papers published by Balzar, Cheary, Toraya and Young [8-11] a large variety of 
functions for analysis of the XRLP such as Voigt (V), pseudo-Voigt (pV) or Pearson VII (P7) are 
proposed. They have the forms  

                                                
♣ Presented at Romanian Conference of Advanced Materials, Constanta, Romania, September 15-18, 2003 
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where s = 2sin & /'  is the module of the wave vector. The values (a1, b2, c1), (a2, b2, c2), (a3, b3, c3) 
describe the amplitude, the position and the shape of the peak, respectively. The parameter a1 from 
pV(s) gives a mixing ratio of Lorentzian contribution to the Gaussian. Denominator of V(s) 
distribution can be expressed as  
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Although extensive research over the past few decades has made progress in the XRLP global  

approximations, their complete analytical properties were not reported in literature. Unfortunately, 
most of them have complicated forms and they are not easy to handle mathematicall y. Recentl y 
[12,15] a simple function with a minimal number of parameters named generalized Fermi function, 
suitable for minimization and having remarkable analytical properties was presented from a purely 
phenomenological point of view. It is given by the relationship, 
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A
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where A, a, b, c are unknown parameters. The values A, c describe the amplitude and the position of 
the peak, a, b control its shape. If b=0, the h function reproduces the Fermi-Dirac electronic energy 
distribution. 
 
 

2.1 The main properties of the h function 
 

The GFF has remarkable mathematical properties, with direct use in determining the 
moments, the integral width, the Fourier transform of the XRLP or the true sample function, 
respectively. Here we give its properties without proofs. 
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(1) if we put a = b, the function h is a symmetric curve around the c value, therefore 
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(6) the zero, the first and the second order moments (µ0, µ1, µ2) of the h function are given by the 
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(7) the integral width � h(a, b) of the h function has the following form 
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(8) the Fourier transform of the h function is given by the relationship 
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(9) if we consider the functions f and g defined by equation (7), their convolution product is the h 

function defined as �
∞

∞−

−= dttgtsfsh )()()( ,                        (11)  

where h represents the experimental XRLP, f is the true XRLP of the sample and g is the instrumental 
function. If we consider the well known relations between the Fourier transforms of the functions h, f 
and g, we can compute the | F(L) | function [1] which is used in Warren and Averbach analysis [16]. 
Therefore, the magnitude of F(L) function has the following form 
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where the arguments of trigonometric and hyperbolic functions are expressed by 
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The subscripts g and h refer to the instrumental and experimental XRLP. Taking into account 
the convolution theorem, the true sample function f is given by the relationship, 
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The last integral cannot be accurately resolved. In order to do this we have to consider some 

arguments. The Fourier transform of f is the F function, given by the relationship 
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where &  means the angle function, )(LFℑ  and )(LFℜ  are the real and the imaginary part of the 

complex function F, respectively. The arguments � , � , 	  and �  from equation (12), depend only on the 
asymmetry parameters a and b of the g and f functions. If the XRLP asymmetry is not very large (i.e. 

a and b parameters are closely enough as value) the 1cos2 ≈α , 1cos2 ≈γ  approximations are 
reliable. The validity of these approximations will be illustrated in Table 2. Therefore we obtain 
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  0 and the magnitude of the Fourier transform for true XRLP sample 
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(10) i f we consider the previous approximation, the true XRLP sample is given by an inverse Fourier 
transform of the F function and consequently we have 
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(11) the integral width of the true XRLP sample can be expressed by the � f function 
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3. Theoretical background 
 

The X-ray di ffraction pattern of a crystal is described in the scattering intensity term, as a 
function of the scattering direction defined by the scattering angle 2 sin & /' , where '  is the wavelength 
of the incident radiation. We shall assume case of the X-ray diffraction for a model mosaic structure 
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in which the atoms are arranged in blocks, each block itself being an ideal crystal, but with adjacent 
blocks not accurately fitted together. If h(2 & ) is the measured diffracted peak profile, the K � 1 l ine is 
resolved by applying the Rachinger correction 

)22(
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and 2 �  is the Bragg angle. The X-ray diffraction line profile is the convolution of the true data 
function f � 1(s) by the instrumental function g� 1(s) and is described by the Fredholm integral equation 
of the first kind given by equation (11). Warren et al. [16] have shown that for small L values, the 
Fourier transform of true sample function can be expressed as 
 

(L)(L)AAF(L) s ε= ,                  (18) 
 

where As function depends on the particle size and A�  depends on the microstrain or distortion of the 
lattice. For cubic lattices, the functions As and A�  can be expressed by the following relationships: 
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where a is the lattice parameter, Deff  is the effective crystall ite size along the normal to the (hkl) 

planes, 
hkl

L)(2ε is the microstrain mean square averaged along the [hkl] direction and 
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0 lkhh ++= . Taking into account the experimental considerations presented in the preamble of 

the paper, for the case when only one line is presented in spectrum, we adopted the theory developed 
by Charlson et al. [2]. They shown that for small L values, the Fourier transform expression of the 
sample function is given by the relationship: 
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functional form 
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With this assumption, the new expression for F function has a second order polynomial form in L, 
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The best fit of equation (22) parameters is determined by the least square method. They are 

selected from condition a2 > 0 requested by the inequality [1], 
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The particle size distribution function P(L) described by Warren [1] and Aldea et al. [3], can 
be determined from the second order derivatives of the strain-corrected As(L), with respect to L, 
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where the function As can be obtained by the Warren et al. [16] method 
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The particle size distribution function can be used to calculate the average particle size using 
the following relations �
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where D is the volumetric mean particle size and ⊥D  is the harmonical average of the particle 

thickness along the normal to the (hkl) reflecting planes. 
The stacking fault probability βα +5.1 (α = the sequence fault probability, β = the twin 

fault probability) can be calculated using the Wagner et al. [18] relationship 
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where Vhkl are the computed coefficients for the fcc lattice [1], if the presence of the distortions can 
be overlooked. Our data processing of the XRLP is consequently based on the previous theoretical  
consideration and on the GFF approximation and its properties. 
 
 

4. Experimental 
 

Our approach was tested on two samples of the supported on Al2O3 nickel catalysts (80 
weight % Ni), treated at 350 oC and 850 oC in hydrogen atmosphere. Only order (111) of the 
intensities could be collected by a step-scanning constant acquisition time technique. Higher order 
reactions could not be measured due to the high dispersion degree of Ni crystallites. The observed 
diffraction profile of Ni foil sample considerate to be free of structural imperfection is used to 
represent the instrumental g function.  

The X-ray (111) di ffraction data of supported metal catalysts were collected using a 
horizontal powder diffractometer in Bragg-Brentano (BB) geometry with Ni filtered CuK �   radiation,  '  = 1.54178 ° A, at room temperature. The typical experimental condition were: 90 sec. for each step, 
initial angle 2&  = 420, step 0.020 respectively and each profile was measured on 120 points. The 
diffraction profiles were measured with a proportional gas detector, single channel pulse-height 
discrimination and standard associated counting circuit. 
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5. Results and discussion 
 

A new an efficient method for a global approximation of XRLP based on GFF has been 
proposed. Based on this simple approximation we could obtained the crystallites size, microstrain 
distribution functions and stacking fault probability of supported metal catalysts by using single X-
Ray profile Fourier transform technique. 

Fig. 1 shows the instrumental l ine profile, obtained from the experimental (111) line of Ni 
foil, very well crystallized. The Figs. 2-3 show the experimental (111) lines for the samples presented 
in the previous section. 

The experimental (111) XRLP were treated by the background and doublet corrections using 
our code XRLINE1, described by Aldea et al. [19]. Unfortunately, the best parameters of the XRLP 
can not be computed by the classical least square method because the GFF cannot be linearized. 
Therefore, the best parameters A, a, b, c for each XRLP were determined using the sequential simplex 
optimization procedure, based on the Nelder and Mead method [20].  

However, the question remains how does the XRLP and computational errors get distributed 
to each fitted parameter in analysis of the profiles. Our error analysis uses the equation for GFF 
approximation: 
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Fig. 2. The experimental relative intensity of the (111)  

αK f  for Ni/Al2O3 350 oC. 
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Fig. 1. The experimental relative intensity of the (111)  

αK for Ni foil. 
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Fig. 3. The experimental relative intensity 

of the (111) αK  for Ni/Al2O3 850 oC. 
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Fig. 4. The experimental relative (111) intensity, 

background and αK  doublet corrected for Ni foil ,(…); 

fi tted by GFF (solid line). 
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where s is module of the wave vector, � A is uncertainty of the intensity, � a, � b are uncertainties of the 
shape parameters, and � c is uncertainty of the peak position. By knowing the fitted parameters A, a, b 
and c from the initial (unperturbed) simplex fit, one can keep these values constant in equation (29)  

 
and solve for � A, � a, � b and � c using the simplex procedure. The values � A, � a, � b and � c show how 
the XRLP errors distribute among the fitted parameters for GFF approximation. The discrepancy 
between the XRLP and GFF approximation is given by the residual index defined as, 
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where np is number of the experimental points. 
 In order to compare validity of the GFF approximation with the classical distributions V, pV 
and P7 we followed the same procedures given by similar relations as (29) and (30). The best fit 
parameter values of each distribution, their uncertainties and residual indexes are reported in Table 1. 
By a compared analysis of the residual indexes we can observe that the GFF approximation has a low 
precision in approaching of the instrumental function but it has the best precision in fitting of all  
experimental XRLP. The Voigt distribution has the best precision in approximation of the narrowest 
broadening of the profiles such as instrumental function but it has a low precision for large integral  
widths. The pseudo-Voigt distribution has a acceptable residual index value for narrow profiles but it 
is not acceptable for profi les having medium and large integral widths. It has the worst precision for 
profiles having effective crystallite size greater than a hundred of angstroms. The residual index for 
Pearson VII distribution is valid for small and medium values of integral width but it is worse for 
profiles having a large broadening such as a crystalinity about some tens of angstroms. 

Based on the best fit parameters and using properties 7 and 11 of the GFF approach, we 
determined the instrumental and true XRLP integral widths � g(� h, � g), � f(� h, � g). In order to further 
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Fig. 5. The experimental relative (111) intensity, 

background   and    αK    doublet    corrected    for 

   Ni/Al2O3 350oC ,(...); fi tted by GFF (solid line). 
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Fig. 6. The experimental relative (111) intensity, 

background and αK  doublet corrected for Ni/Al2O3 
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justify our approximation 1cos2 ≈α ,  1cos2 ≈γ  adopted in property 9, we give the values for 

α2cos , γ2cos  and the relative errors of the approximation in Table 2. 
 
 

Table 1. The best parameters, uncertainties and residual indexes for all distributions. 
 

  GFF A± � A a± � a b± � b c± � c 
  g(s) 37117 ± 568.6 1029.24 ± 26.28 975.5 ± 45.05 0.489 ± 0.546 × 10-4 

  h(s) 350
o
C 1282.05 ± 14.65 146.766 ± 4.53 218.133 ± 8.328 0.491 ± 0.265 × 10-3 

  h(s)850
o
C 4233.5 ± 28.435 284.946 ± 5.297 382.936 ± 9.460 0.489 ± 0.925 × 10-4 

  V a1± � a1 a2± � a2 a3± � a3 a4± � a4 

  g(s) 17897.5 ± 108.25 0.49 ± 0.75 × 10-5 0.0016 ± 0.32 × 10-5 0.13 ± 0.14 × 10-3 

  h(s) 350
o
C 631.695 ± 9.1 0.489 ± 0.24 × 10-4 0.008 ± 0.3 × 10-5 0.267 ± 0.26 × 10-3 

  h(s)850
o
C 2147.93 ± 15.7 0.488 ± 0.33 × 10-4 0.019 ± 0.26 × 10-5 1.709 ± 0.8 × 10-3 

  pV b1± � b1 b2± � b2 b3± � b3 b4± � b4 

  g(s) 0.138 ± 0.026 17984.9 ± 107.1 0.489 ± 0.781 × 10-5 0.00123 ± 0.81 × 10-5 

  h(s) 350
o
C 0.303 ± 0.062 638.9 ± 8.12 0.489 ± 0.87 × 10-4 0.0069 ± 0.986 × 10-4 

  h(s)850
o
C 0.034 ± 0.003 2062.9 ± 19.7 0.488 ± 0.403 × 10-4 0.0035 ± 0.44 ×10-4 

  P7 c1± � c1 c2± � c2 c3± � c3 c4± � c4 

  g(s) 17823.4 ± 117.44 0.489 ± 0.865 × 10-5 0.003 ± 0.270 ×10-4 26.056 ± 20.9 
  h(s) 350

o
C 636.53 ± 8.004 0.489 ± 0.878 × 10-4 0.015 ± 0.292 × 10-3 3.711 ± 0.796 

  h(s)850
o
C 2155.43 ± 17.24 0.488 ± 0.28 × 10-4 0.0078 ± 0.976 × 10-4 1.662 ± 0.087 

  Rindex[%]     
 GFF V pV P7 
  g(s) 5.33 4.36 4.52 5.02 
  h(s) 350

o
C 8.85 9.74 9.65 9.69 

  h(s)850
o
C 5.59 8.24 11.32 5.98 
 
 

Table 2. The integral widths for instrumental function and true samples. 
 

Name of 
sample 

�  g(a,b) 
[Å-1] 

� f(ρh,ρg) 
[Å-1] 

α2cos  γ2cos  Rel. err. 
% 

g(s) 0.00313 - 0.99786 - 0.21 
h(s)350C - 0.01707 - 0.94217 5.78 
h(s)850C - 0.00863 - 0.99472 0.52 

 
 
The typical results for the background, doublet corrections of the XRLP and profiles resulting 

from GFF approximation are shown in Figs. 4-6.  
Also, the microstructural parameters Deff, < � 2>hkl, Dari tm, Dharm and βα +5.1 were calculated 

using relations (22), (21), (26), (27) and (28) for each distributions. Numerical results obtained from 
classical distributions are in good relations with parameters determined from GFF approach. The 
robustness of GFF approximation in this step of analysis arises from possibil ity to use the analytical 
form of Fourier transform given by relation (12) instead of the numerical Fourier transform. In order 
to connect the V, pV, P7 distributions to relation (22) we had to execute their numerical Fast Fourier 
Transforms (FFT) because they do not have analytical formula. It is well known that validity of 
numerical FFT depend on the filtering technique adopted. In this way validity of the structural 
parameters are closely related to the accuracy of the FFT of classical distributions. 
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The main results regarding the investigated supported metal catalysts microstructures, are 

summarized in Table 3. 
 
 

Table 3. Structural parameters of metal supported catalysts investigated. 
 
Samples  Ni350

o
C    Ni350

o
C   

 GFF V pV P7 GFF V pV P7 
Deff [

�
] 70 75 68 72 132 138 127 139 

52 10−×hklε
 

0.23548 0.22832 0.24259 0.21871 0.02549 0.02311 0.02733 0.02139 

Darith[
�

] 42 45 41 43 75 77 76 80 
Dharm[

�
] 35 33 31 32 62 64 62 65 

SFP % 3.87 3.52 3.97 3.61 2.34 2.28 2.51 1.97 
Deff - effective particle size eq.(22) 

2
hklε  - mean square of the microstrain for 

2
effD

L = ,eq.(21) 

Darith - arithmetic average particle size eq.(26) 
Dharm - harmonic average particle size eq.(27) 
SFP - stacking fault probabil ity (1.5�  + � ) eq.(28) 

 
 
The microstrain and particle size distribution functions were calculated using equations (21) 

and (24) and they are plotted in Figs. 7 and 8. 
 
 

6. Conclusions 
 

The GFF as a new approximation offers several advantages with respect to the traditional  
method of Fourier analysis. The conclusions that can be drawn from the study are as follows: 
 
(i) The propagated errors occurring in classical sampling analysis (such as: background 

corrections, angular range of observation and the number of equally spaced points at which 
the diffraction line intensity is measured) are eliminated; 

(ii) Our numerical results show that GFF can successfully treat asymmetric shapes of the XRLP 
and from mathematical point of view is simpler than Voigt, pseudo-Voigt or Pearson VII 
approaches. 
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(i ii) Analytical formula of the integral width for true sample can successfully be used in Scherrer 
method for crystallite size evaluation. 

(iv) Analytical formula of Fourier transform of true sample can be used in Warren-Averbach or 
Charlson methods. 
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