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A NEW X-RAY LINE PROFILE APPROXIMATION USED FOR THE
EVALUATION OF THE GLOBAL NANOSTRUCTURE OF NICKEL CLUSTERS*

N. Aldea, C. V. Tiusan, B. Baz

Nationd Institute for Research and Devel opment of 1sotopic and Molecular Technology
P.O. Box 700, 3400 Cluj-Napoca, Romania

The analysis of the diffraction line broadening in X-ray powder pattern is anaytically
caculated using the Generalized Fermi Function facilities. X-ray line broadening
investigations of supported catalysts have been limited to finding the average crystallite size
from the integral width or the full width at half maximum of the diffraction line. In the case of
supported metal catalysts, it is generdly difficult to perform satisfactory intensity
measurements of the higher order (hki) reflections. Consequently, the classica method of
Warren and Averbach cannot be applied. In our cases, only one line is present in the
experimental spectra, so we used an gpproximation method of Charlson that can be applied for
small crystallite size. We present a new fitting method based on the Generdized Fermi
Function for the approximation and Fourier transform of the experimental X-Ray line profiles.

(Received September 20, 2003; accepted February 18, 2004)

Keywords: Supported metal catalysts, Crystallite size, X-Ray diffraction, Fourier transform

1. Introduction

The X-ray powder pattern diffraction profile broadening analysis is a valuable technique for
the crystdline materials structure and properties investigation. The powder reflection broadening of
the meta support catayst is normally caused by small size crystallites and by distortions within
crystallites due to dislocation configurations [1,2]. The structural information obtainable by single
X-ray profile Fourier transform consist in: effective particle size, microstrains, particle distribution
function and stacking fault probability. These information were obtained by numerical deconvolution
of theinstrumental and experimenta X-Ray line profiles (XRLP) approximated by Generalized Fermi
Function (GFF) [3-5].

The XRLP Fourier analysis validity depends strongly on the magnitude and nature of the
errors propagated in analysis [6]. Herein, we emphasi ze only sampling factors such as evaluation of
the background corrections, angular range of the observati on and the number of equally spaced points
at which the diffraction line intensity is measured. This type of errors was recently treated [7]. Our
andyticd approach, adopted here, diminates al these errors.

2 Why do we use GFF for the XRLP analysis?

It is known that, from a mathematica point of view, XRLP are described by an asymmetric
function [1]. In the papers published by Balzar, Cheary, Toraya and Y oung [8-11] a large variety of
functions for analysis of the XRLP such as Voigt (V), pseudo-Voigt (pV) or Pearson VIl (P7) are
proposed. They have the forms
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where s = 2sn 6/1 is the module of the wave vector. The vaues (a, by, ¢1), (a2, b, ©2), (as, bs, C3)
describe the amplitude, the position and the shape of the peak, respectively. The parameter a; from
pV(s) gives a mixing ratio of Lorentzian contribution to the Gaussian. Denominator of V(s)
distribution can be expressed as

[P ) gy oy O] exn(ai). @

where ® istheintegral of probability defined by the rd ationship

®(a,) = % [exp(-t)at B
0

Although extensive research over the past few decades has made progressin the XRLP global
approximations, their complete anadytical properties were not reported in literature. Unfortunatdy,
most of them have complicated forms and they are not easy to hand e mathematically. Recently
[12,15] a simple function with a minima number of parameters named generalized Fermi function,
suitable for minimization and having remarkable analytical properties was presented from a purdy
phenomenological point of view. It is given by the relationship,

A

h(S) = e—a(s—c) + eb(s—c)

(6)

where A, a, b, ¢ are unknown parameters. The values A, ¢ describe the amplitude and the position of
the peak, a, b control its shape. If b=0, the h function reproduces the Fermi-Dirac dectronic energy
distribution.

2.1 Themain properties of the h function

The GFF has remarkable mathematical properties, with direct use in determining the
moments, the integral width, the Fourier transform of the XRLP or the true sample function,
respectively. Here we give its properties without proofs.
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(1) if we put a = b, the function h is a symmetric curve around the c value, therefore
h(-s+c)=h(s+c);
(2) let a,b,c be fixed; the coordinates of the h function maximum reported to ¢ value, are (&+c, #)

where
Ina
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(3) if wesets= cweaobtan
h(C) =
(4) bysdtings =s-c,p=(a+ b)/2andq= (a- b)/2, we have
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(5) thelimit of h(s) function for infinite arguments is finite, so that
I|m h(s') =0;

(6) the zero, the first and the second order moments (Mo, M1, H2) of the h function are given by the
relationships

2
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(7) theintegral width dn(a, b) of the h function has the following form
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(8) the Fourier transform of the h function is given by the relationship
H(L)=AJ‘COSthJrSlnth e?®tds ~CO ﬂ—i—ﬂzl']; (10)
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(9) if we consider the functions f and g defined by equation (7), their convolution product is the h
function defined as

h(s) = [ f(s-tg(t)ct, an
where h represents the experimental XRLP, f isthe true XRLP of the sample and g is the instrumental
function. If we consider the well known re ations between the Fourier transforms of the functions h, f
and g, we can computethe | F(L) | function [1] which is used in Warren and Averbach analysis [16].
Therefore, the magnitude of F(L) function has the following form

(12)

|F(L)|:A“Og \/cos a+snh? A

AP, \ cos® y+sinh*d

where the arguments of trigonometric and hyperbolic functions are expressed by
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The subscripts g and h refer to the instrumental and experimental XRLP. Taking into account
the convol ution theorem, the true sampl e function f is given by the rel ationship,

A . cos{?i +iﬂj
f(s) = hpg I ,09 ,09
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exp(274.s)dL (13)
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The last integral cannot be accuratdy resolved. In order to do this we have to consider some
arguments. The Fourier transform of f is the F function, given by the relationship

OF (L)

PO =[FLep(oL) L) =adan s 3

where 6 means the angle function, 0JF(L)| and O|F(L)| are the real and the imaginary part of the
compl ex function F, respectively. The arguments a, £, y and 6 from eguation (12), depend only on the
asymmetry parameters a and b of the g and f functions. If the XRLP asymmetry is not very large (i.e.
a and b parameters are closely enough as value) the cos’a =1, cos’ y=1 approximations are
reiable. The validity of these approximations will be illustrated in Table 2. Therefore we obtain
OF(L)| << OJF(L)|, € (L) = 0 and the magnitude of the Fourier transform for true XRLP sample
can be expressed as

cosh ﬂ

APy Py .
AP coshﬂzL

Ph
(10)if we consider the previous approximation, the true XRLP sampleis given by an inverse Fourier
transform of the F function and consequently we have

IF(L)|= (14)

oA cos;szh cosh p,
f(s)= Ps Ps ; (15)
cosh2p, s+ cosPh
9
(11) theintegral width of the true XRLP sample can be expressed by the d; function
m TPy
o.(p,,p,)= cos +1]. (16)
Frn Dy, Py
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3. Theoretical background
The X-ray diffraction pattern of a crystal is described in the scattering intensity term, as a

function of the scattering direction defined by the scattering angle 2 sin 6/4, where 4 is the wave ength
of the incident radiation. We shall assume case of the X-ray diffraction for a modd mosaic structure
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in which the atoms are arranged in blocks, each block itsdf being an ideal crystal, but with adjacent
blocks not accuratdy fitted together. If h(26) is the measured diffracted peak profile, the K,y lineis
resolved by applying the Rachinger correction

Ny (26) = ,,(26) + 0,20~ 026,.,.). a7

where A 268

al-a2

isthe angular doubl et separation equal to

2tan 9 A(Kaz) B A(Kal)
A
and 20 is the Bragg angle. The X-ray diffraction line profile is the convolution of the true data
function f,1(s) by the instrumental function g,,(s) and is described by the Fredholm integra equation
of the first kind given by equation (11). Warren et a. [16] have shown that for small L values, the
Fourier transform of true sampl e function can be expressed as

F(L) =A*(DAS(L), (18)

where A°® function depends on the particle size and A° depends on the microstrain or distortion of the
lattice. For cubic lattices, the functions A° and A’ can be expressed by the foll owing rel ationships:

on_._ L
AL =1 Dy, (hkl)
2L2(£%(L)) h
AS(L)=1- L<£2(L)>hkl : (19

where a is the lattice parameter, Deff is the effective crystalite size dong the normal to the (hkl)
planes, <$2(L)>hkl is the microstrain mean sguare averaged aong the [hkl] direction and

hi = h?+k? +12. Taking into account the experimental considerations presented in the preambl e of

the paper, for the case when only one line is presented in spectrum, we adopted the theory devel oped
by Charlson @ d. [2]. They shown that for small L values, the Fourier transform expression of the
sampl e function is given by the rdationship:

2 2 3
F(L):l—L—C2<52(L)> L2+M1 (20)
Dyt b Dt

where C? = 277°hl /a®. By using athird order polynomial least squares fit Deff can be solved if the

functional form <£2(L)>hkl is known. Rothman et al. [17] assume the form of the strain function as

<52(L)>hH = % 21)
With this assumpti on, the new expression for F function has a second order polynomia forminlL,

F(L)=a, +aL +a,l? (22)
wherethe ay, a; and a, coeffidients are defined as

2
a0:11 %:_[Di-i-CZK]’ a, :C K

eff Deff

The best fit of equation (22) parameters is determined by the least square method. They are
sdlected from condition a, > O requested by the inequdity [1],
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d?F(L)

d?
The particle size distribution function P(L) described by Warren [1] and Aldea et d. [3], can
be determined from the second order derivatives of the strain-corrected A%(L), with respect to L,

>0. (23)

d?AS(L)
P(L) = D R (24)
where the function A° can be obtained by the Warren et al. [16] method
21 (£%(L))  L°
A%(L) =F(L)exp - (25)

Ao
The particle size distribution function can be used to ca culate the average particle size using
the following relations

D= [LP(L)dL, 26)

min

D, = [T?dL] , 27)

where D is the volumetric mean particle size and D, is the harmonical average of the particle
thickness a ong the normal to the (hkl) refl ecting planes.

The stacking fault probability 1.5a + 8 (a = the sequence fault probability, £ = the twin
fault probability) can be cal culated using the Wagner et d. [18] relationship

o {150+ BV

a

: (29)

Ol -

1
Deff
where Vhkl are the computed coefficients for the fcc lattice [1], if the presence of the distortions can

be overlooked. Our data processing of the XRLP is consequently based on the previous theoretica
cong deration and on the GFF approxi mation and its properties.

4. Experimental

Our approach was tested on two samples of the supported on Al,Os; nicke catalysts (80
weight % Ni), trested a 350 °C and 850 °C in hydrogen atmosphere. Only order (111) of the
intensities could be collected by a step-scanning constant acquisition time technique. Higher order
reactions could not be measured due to the high dispersion degree of Ni crystallites. The observed
diffraction profile of Ni foil sample considerate to be free of structural imperfection is used to
represent the instrumental g function.

The X-ray (111) diffraction data of supported metal catalysts were collected using a
horizontal powder diffractometer in Bragg-Brentano (BB) geometry with Ni filtered CuK, radiation,
A=154178"° A, at room temperature. The typical experimental condition were: 90 sec. for each step,
initial angle 20 = 42°, step 0.02° respectively and each profile was measured on 120 points. The
diffraction profiles were measured with a proportional gas detector, single channd pulse-height
discrimination and standard associated counting circuit.



A new X-ray line profil e approximation used for the evaluation of the global nanostructure of nickel ... 231

Intesity

5. Results and discussion

A new an efficient method for a globa approximation of XRLP based on GFF has been
proposed. Based on this simple approximation we could obtained the crystallites size, microstrain
distribution functions and stacking fault probability of supported metal catalysts by using single X-
Ray profile Fourier transform technique.
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Fig. 1. The experimental relative intensity of the (111) Fig. 2. The experimental relative intensity of the (111)
K for Ni fail. K4 f for Ni/Al,Oz 350 °C.

Fig. 1 shows the instrumenta line profile, obtained from the experimenta (111) line of Ni
foil, very well crystallized. The Figs. 2-3 show the experimental (111) lines for the samples presented
in the previous section.

The experimental (111) XRLP were treated by the background and doubl et corrections using
our code XRLINE1, described by Aldea et al. [19]. Unfortunately, the best parameters of the XRLP
can not be computed by the classica least square method because the GFF cannot be linearized.
Therefore the best parameters A, a, b, ¢ for each XRLP were determined using the sequential simplex
optimization procedure, based on the Nelder and Mead method [20].
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Fig. 3. The experimental relative intensity

Fig. 4. The experimenta rdative (111) intensity,
background and K doublet corrected for Ni foil (...);
fitted by GFF (solid line).

of the (111) K, for Ni/Al, O3 850 °C.

However, the question remains how does the XRLP and computationa errors get distributed
to each fitted parameter in anaysis of the profiles. Our error analysis uses the equation for GFF
approximation:
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Az A
h(s) + oh = o (az@)(s-(c2&) 4 qDED)(s-(CEE)) » (29)

where sis modul e of the wave vector, JA is uncertainty of the intensity, da, ob are uncertainties of the
shape parameters, and dc is uncertainty of the peak paosition. By knowing the fitted parameters A, a, b
and c fromtheinitial (unperturbed) simplex fit, one can keep these values constant in equation (29)
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Fig. 5. The experimenta reative (111) intensity, Fig. 6. The experimental relative (111) intensity,
background and K, doublet corrected for background and K doublet corrected for Ni/Al;O3
Ni/Al,O;3 350,C ,(...); fitted by GFF (solid line). 850,C ,(...); fitted by GFF (sdlid line).

and solve for JA, da, ob and dc using the simplex procedure. The values dA, da, db and éc show how
the XRLP errors distribute among the fitted parameters for GFF approximation. The discrepancy
between the XRLP and GFF approximation is given by theresidual index defined as,

np.

> (XRLP -GFF)) i

Rindex == np ’ (30)
> XRLP?

i=1

where np is number of the experimenta points.

In order to compare vaidity of the GFF approxi mation with the classica distributions V, pV
and P7 we followed the same procedures given by similar reations as (29) and (30). The best fit
parameter val ues of each distribution, their uncertainties and residual indexes are reported in Table 1.
By a compared analysis of the residua indexes we can observe tha the GFF approxi mation has a low
precision in approaching of the instrumenta function but it has the best predsion in fitting of al
experimental XRLP. The Voigt distribution has the best precision in approximation of the narrowest
broadening of the profiles such as instrumental function but it has a low precision for large integral
widths. The pseudo-Voigt distribution has a acceptable residual index va ue for narrow profiles but it
is not acceptable for profiles having medium and large integral widths. It has the worst precision for
profiles having effective crystallite size greater than a hundred of angstroms. The residua index for
Pearson VII distribution is valid for small and medium values of integrd width but it is worse for
profiles having alarge broadening such as a crystalinity about some tens of angstroms.

Based on the best fit parameters and using properties 7 and 11 of the GFF approach, we
determined the instrumental and true XRLP integral widths dg(pn, pg), d(pn pg). IN order to further
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justify our approximation cos’a =1, cos’y=1 adopted in property 9, we give the values for

cos’ a, cos’ y and therelative errors of the gpproximation in Table 2.

Table 1. The best parameters, uncertainties and residual indexesfor all distributions.

GFF AZ3A atoa b+ob Cctodc
a(9) 37117 + 568.6 1029.24 + 26.28 975.5 + 45.05 0.489 + 0.546 x 10
h(s) aso’c 1282.05 + 14.65 146.766 + 4.53 218.133 + 8.328 0.491 + 0.265 x 107
h(S)eso’c 42335+ 28.435 284.946 + 5.297 382.936 + 9.460 0.489 + 0.925 x 10
\Y/ y+oa ptoa 2et0 atoa,
q(s) 17897.5+ 10825 | 0.49+0.75x 10> | 0.0016+0.32x 10> | 0.13+0.14 x 10°
h(s) as0°c 631.695+ 9.1 0.489+ 0.24 x 10 0.008+ 0.3 x 10° 0.267 +0.26 x 10°
h(S)gso’c 214793+ 157 | 0.488+0.33x10" | 0.019+ 0.26 x 10° 1.709+ 0.8 x 10°
pV bxéb, bo+o6b, bstdbs bat6b,
q(s) 0.138 + 0.026 17984.9 + 107.1 0.489+ 0.781 x 10° | 0.00123 + 0.81 x 10”
h(s) 3s0°c 0.303 + 0.062 638.9+ 8.12 0.489+ 0.87 x 10" | 0.0069 + 0.986 x 10™
h(S)gso’c 0.034 + 0.003 2062.9 + 19.7 0.488+ 0.403 x 10* | 0.0035 * 0.44 x10™
P7 C1+0C; 00, C3+0Cs C4t0Cy
a(9) 17823.4 + 117.44 | 0.489+0.865 x 10> | 0.003 + 0.270 x10* 26.056 + 20.9
h(S) as0c 636.53+8.004 | 0.489+0.878 x 10" | 0.015+ 0.292 x 10° 3.711+ 0.796
h(S)eso’c 215543+ 17.24 | 0.488+0.28 x 10* | 0.0078 + 0.976 x 10°* 1.662 + 0.087
Rindex[%]

GFF V pV P7
a(s) 5.33 4.36 452 5.02
h(S) 3500c 8.85 9.74 9.65 9.69
h(S)g500C 5.59 8.24 11.32 5.98

Table 2. Theintegral widths for instrumenta function and true samples.

Name of [84(@b) | &(pnpg) | cos’a | cos’y |Re. er
sample | [AY] [AY %

g(s) 0.00313 - 0.99786 - 0.21
h(S) 350C - 0.01707 - 0.94217 5.78
h(S)ssoc - 0.00863 - 0.99472 0.52

Thetypical results for the background, doublet corrections of the XRLP and profiles resulting
from GFF approximation are shown in Figs. 4-6.
Also, the microstructural parameters Dy, <6%> 1, Daritmy Dharm @nd 1.5 + [ were calculated

using rdations (22), (21), (26), (27) and (28) for each distributions. Numerical results obtained from
classical distributions are in good reations with parameters determined from GFF approach. The
robustness of GFF approximation in this step of analysis arises from possibility to use the anal ytical
form of Fourier transform given by reation (12) instead of the numerical Fourier transform. In order
to connect the V, pV, P7 distributions to reation (22) we had to execute their numerical Fast Fourier
Transforms (FFT) because they do not have anaytical formula. It is wel known that validity of
numerical FFT depend on the filtering technique adopted. In this way vdidity of the structural
parameters are closdy re ated to the accuracy of the FFT of classical distributions.




234 N. Aldea, C. V. Tiusan, B. Barz
4.5 4
Ni/A1,0,350°C 00304 ) o
40 : . Ni/A1,0,350°C
o Ni/A1,0,850°C ) 0
- 0.025 4 o Ni/Al1,0,850°C
. 4 3
? 3.0
s 304 0.020 A
-
x 2.5 4 —
< 10.015 -
H o
A 2.0 A by 8
- 0.010 S
2 1.5 i S
S ¢
<
w B ¢
v 1.0 4 % 0.005 o <<,>>
“O-...
O i 00
O- ¢ 000,
0.5 00y / 0900600000,
O . <@ OOOO000 00
0101000 0 G G ety 0.000
0.0 T T T T T T T T T T T T T T T 1
0 20 40 60 80 100120140160180200220240

40

60 80
L[A]

100

Fig. 7. The microstrain distribution

functions.

1
120

Fig. 8. The particles size distribution
functions.

LIA]

The main results regarding the investigated supported metal catalysts microstructures, are
summarized in Table 3.

Table 3. Structural parameters of metal supported catalysts investigated.

Samples Nigso’c Nisso’c
GFF V pVv P7 GFF v pV P7
Det [A] 70 75 68 72 132 138 127 139
< £2, > %1075 | 0.23548 | 0.22832 | 0.24259 | 0.21871 | 0.02549 | 0.02311 | 0.02733 | 0.02139
Daitn[A] 42 45 41 43 75 77 76 80
Dharr{ A 35 33 31 32 62 64 62 65
SFP % 3.87 3.52 3.97 3.61 2.34 2.28 251 1.97

Deff - effective particle size eq.(22)

2 . . _ Dg
<€hk| > - mean square of the microstrain for L = - ,69.(21)

Darith - arithmetic average particle size eq.(26)
Dharm - harmonic average particle size eq.(27)

SFP - stacking fault probability (1.5a + ) eqg.(28)

The microstrain and particle size distribution functions were calculated using equations (21)

and (24) and they are plotted in Figs. 7 and 8.

6. Conclusions

The GFF as a new approximation offers several advantages with respect to the traditiona

method of Fourier analysis. The cond usions that can be drawn from the study are as follows:

(i)

The propagated errors occurring in classicd sampling analysis (such as. background

corrections, angular range of observation and the number of equally spaced points at which
the diffraction line intensity is measured) are diminated;

(if)

Our numerical results show that GFF can successfully treat asymmetric shapes of the XRLP

and from mathematical point of view is simpler than Voigt, pseudo-Voigt or Pearson VI
approaches.
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(iii)  Analytica formula of the integral width for true sample can successfully be used in Scherrer
method for crystallite size eval uation.

(iv) Analytical formula of Fourier transform of true sample can be used in Warren-Averbach or
Charlson methods.
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